PEREZONE AND RELATED SESQUITERPENES FROM PARVIFOLINE

E. García G., V. Mendoza, and A. Guzmán B.
Instituto de Investigaciones Quimico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, P.O. Box 59-A, Morelia, Michoacán, México

Abstract

The previously known sesquiterpenes, curcuhydroquinone [5b], curcuquinone [6a], xanthorrhizol [5a], perezone \{6c], isoperezone [6b], and hydroxyperezone [$\mathbf{6 d}$] were obtained in good yields from parvifoline [1]. The chiral center in parvifoline is assigned the R configuration based on these conversions.

A large number of natural products containing the quinone functionality have shown useful chemotherapeutic activity (1,2). As a result of the utility of these compounds, intense synthetic efforts have been directed toward the development of methods that would permit construction of natural quinones (3-7) or the regioselective introduction of functionality into the quinone system. We wish to report the preparation of the benzoquinones perezone $[\mathbf{6 c}]$ (8), isoperezone [6b] (9), hydroxyperezone $[\mathbf{6 d}](10)$, and curcuquinone $[\mathbf{6 a}]$ (11), and the sesquiterpene xanthorrhizol [5a] (12) from parvifoline [1] (13,14), which was obrained as a major component (15%) of Pereziae spp. (15).

Parvifoline [1] can be isomerized by acid catalysis to isoparvifoline [2], the ozonolysis of which produces the aldehyde 3a. This is a key compound for the preparation of the sesquiterpenes mentioned previously, since its aromatic ring has a methyl group para to the side chain. This side chain has a chiral center that is not involved in the synthetic pathways to those sesquiterpenes.

Treatment of 3a by Dakin's reaction (16) gave hydroquinone $4 \mathbf{a}$ and this, with $\mathrm{CH}_{3} \mathrm{MgI}$ (17) followed by dehydration, gave (- -curcuhydroquinone [5b]. In agreement with the chemical correlation made by McEnroe (11), we obtained $[\alpha]^{25} \mathrm{D}-36$ (c $2.3, \mathrm{CHCl}_{3}$) indicating that the previously unassigned stereochemistry of $\mathrm{C}-8$ of parvifoline $[\mathbf{1}]$ (13) is the R configuration. Treatment of curcuhydroquinone $[\mathbf{5 b}]$ with Jones reagent yielded curcuquinone $\{\mathbf{6 a}]$ (11), while $\mathbf{5 b}$ by previously reported reaction with $\mathrm{H}_{2} \mathrm{O}_{2} / \mathrm{NaOH}$ yielded hydroxyperezone [$\left.\mathbf{6 d}\right]$ (18).

Oxidation (19) and decarboxylation (20) of aldehyde 3a produced 5-(2^{\prime}-ketohep-tan- 6^{\prime}-yl)-2-methylphenol, which can also be prepared by direct decarbonylation of 3a with Wilkinson's reagent $(21,22)$. Reactions of this intermediate with $\mathrm{CH}_{3} \mathrm{MgI}$ followed by dehydration gave xanthorrhizol [5a], identical with the natural product (12).

Aldehyde $3 \mathbf{a}$ with $\mathrm{Me}_{2} \mathrm{SO}_{4}$ produces methoxyaldehyde $\mathbf{3 b}$, which by a modification of Dakin's reaction (23) with catalytic SeO_{2}, afforded methoxyphenol $\mathbf{4 b}$. This compound with $\mathrm{CH}_{3} \mathrm{MgI}$ and dehydration gave 4-0-methylcurcuhydroquinone [5c]. Hydroxylation ortho to the free hydroxyl group with $\mathrm{Cu}_{2} \mathrm{Cl}_{2}$ in $\mathrm{MeCN}(24,25)$ occurs smoothly and in good yield to produce the corresponding catechol $\mathbf{5 d}$, which by oxidative demethylation (26) with $\mathrm{AgO} / \mathrm{HNO}_{3}$ produced isoperezone $[\mathbf{6 b}]$ as previously reported.

Perezone $\{\mathbf{6 c}\}$ was obtained by treatment of $\mathbf{3 a}$ under the same conditions $\left(\mathrm{Cu}_{2} \mathrm{Cl}_{2} /\right.$ MeCN) (23) followed by Dakin's reaction (16) to give a hydroxyhydroquinone, which was not isolated. Grignard reaction with excess $\mathrm{CH}_{3} \mathrm{MgI}$ on this compound, dehydration, and subsequent oxidation gave perezone $[\mathbf{6 c}]$ identical with the natural product (8).

As parvifoline $[\mathbf{1}]$ is easily obtained in very high yields from certain Pereziae spp. and can be easily functionalized, it can serve as a starting material for other sesquiterpenes having the same R configuration of the chiral center.

1

3a $\quad \mathrm{R}=\mathrm{H}$
3b $\mathrm{R}=\mathrm{Me}$

$\begin{array}{ll}\text { 5a } & \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{H}, \mathrm{R}_{3}=\mathrm{OH} \\ \mathbf{5 b} & \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{OH}, \mathrm{R}_{3}=\mathrm{H} \\ \text { 5c } & \mathrm{R}_{1}=\mathrm{OH}, \mathrm{R}_{2}=\mathrm{OMe}, \mathrm{R}_{3}=\mathrm{H} \\ \text { 5d } & \mathrm{R}_{1}=\mathrm{R}_{3}=\mathrm{OH}, \mathrm{R}_{2}=\mathrm{OMe}\end{array}$

2

$4 a \quad \mathrm{R}=\mathrm{H}$
4b $\mathrm{R}=\mathrm{Me}$

6a $\quad R_{1}=R_{2}=H$
6b $\quad \mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{OH}$
6c $\quad \mathrm{R}_{1}=\mathrm{OH}, \mathrm{R}_{2}=\mathrm{H}$
6d $\quad \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{OH}$

EXPERIMENTAL

Melting points are uncorrected. Ir spectra were carried out on a Perkin-Elmer 599B; ${ }^{1} \mathrm{H}$-nmr spectra were determined in CDCl_{3} with internal TMS on a Varian Associates EM-360. Optical rotations, measured by using a Perkin-Elmer 121 M polarimeter, were performed at room temperature. High resolution mass spectra were measured in a Finnigan MAT-311A.

Parvifoline [1].-The dried and ground roots (1 kg) of Pereziae longifolia Blake (Compositae) were extracted twice with hexane (5 liters) under reflux for 4 h , and the combined extracts were evaporated to dryness. The solid obtained was recrystallized from $\mathrm{C}_{6} \mathrm{H}_{6} / \mathrm{Me}_{2} \mathrm{CO}$ to yield 138 g (13.8%) of parvifoline [1] identical in all respects with authentic samples (14).

IsOparvifoline [2].-A solution containing 100 g of parvifoline [1] and catalytic p - TsOH in $\mathrm{C}_{6} \mathrm{H}_{6}$ was heated at reflux for 3 h . The reaction mixture was washed (dilute NaHCO_{3} and $\mathrm{H}_{2} \mathrm{O}$), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated. The residue was chromatographed $\left(\mathrm{SiO}_{2}\right)$; elution with $\mathrm{C}_{6} \mathrm{H}_{6}$ yielded 99 g of isoparvifoline [2] as a colorless oily material that showed ir bands at $3500(\mathrm{O}-\mathrm{H})$ and $1650 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C})$; ${ }^{1} \mathrm{H} \mathrm{nmr} 5.56,6.33$, and 5.93 (1 H each, $\mathrm{s}, \mathrm{H}-1, \mathrm{H}-4$, and $\mathrm{H}-11$), $5.00(1 \mathrm{H}$, broad s, OH), $2.93(1 \mathrm{H}$, $\mathrm{CH}), 2.13\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{3}\right), 1.81-1.23\left(6 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{2}\right), 1.20 \mathrm{Ppm}\left(3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}\right) ;$ hrms m / z $216.1523 \mathrm{M}^{+}$(calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}, 216.1514$).

2(2'-KETOHEPTAN-6'-YL)-4-HYDROXY-5-METHYLBENZALDEHYDE [3a].-Isoparvifoline [2] (50 g) in EtOAc (200 ml) was treated with ozone at -70° until the characteristic blue color was obtained (12 h). The resultant solution was gradually added to a suspension of 35 g of powdered zinc and 300 ml of HOAc at 50%. After 1 h of agitation, the mixture was filtered under reduced pressure. The resultant solution was neutralized with $10 \% \mathrm{NaHCO}_{3}$, extracted with $\mathrm{Et}_{2} \mathrm{O}$, washed with $\mathrm{H}_{2} \mathrm{O}$, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated to dryness to obtain a sticky oil that was purified by chromatography over SiO_{2}. Elution with $\mathrm{CHCl}_{3}-\mathrm{Me}_{2} \mathrm{CO}(9.5: 0.5)$, gave $48 \mathrm{~g}(96 \%)$ of the aldehyde 3 a as a colorless oil: ir $3400(\mathrm{OH}), 1710$ ($\mathrm{C}=\mathrm{O}$ ketone), $1680 \mathrm{~cm}^{-1}\left(\mathrm{C}=\mathrm{O}\right.$ aldehyde); ${ }^{1} \mathrm{H} \mathrm{nmr} 9.93(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}), 7.45$ and $6.75(1 \mathrm{H}$ each, s , $\mathrm{ArH}), 8.51(1 \mathrm{H} \mathrm{br}, \mathrm{OH}), 3.76(1 \mathrm{H}, \mathrm{m}, J=7 \mathrm{~Hz}, \mathrm{CH}), 2.4\left(2 \mathrm{H} \mathrm{br}, \mathrm{CH}_{2} \mathrm{CO}\right), 2.23$ and $2.10(3 \mathrm{H}$ each, s , $7-\mathrm{CH}_{3}$ and $\left.13-\mathrm{CH}_{3}\right), 1.50\left(4 \mathrm{H}, \mathrm{br},-\mathrm{CH}_{2} \mathrm{CH}_{2}-\right), 1.13 \mathrm{ppm}\left(3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}\right)$; hrms m / z $248.1431 \mathrm{M}^{+}$(calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{3}, 248.1412$).

2(2'-KETOHEPTAN-6'-YL)-2-METHYL-1,4-HYDROQUINONE [4a].-To a solution containing 2.48 g of 3 a in 10 ml of IN NaOH was added at room temperature 12 ml of $3 \% \mathrm{H}_{2} \mathrm{O}_{2}$; the solution was kept in the dark at 40° during $15 \mathrm{~h}(16)$. The mixture was neutralized with HOAc and extracted with $\mathrm{Et}_{2} \mathrm{O}$, giving after evaporation the hydroquinone $\mathbf{4 a}(2.3 \mathrm{~g}, 98 \%)$; ir $3400(\mathrm{OH})$ and $1710 \mathrm{~cm}^{-1}$ ($\mathrm{C}=\mathrm{O}$ ketone); ${ }^{1} \mathrm{H} \mathrm{nmr}$ $6.56(2 \mathrm{H}$, apparent $\mathrm{s}, \mathrm{ArH}), 5.36\left(2 \mathrm{H}, \mathrm{br}, \mathrm{D}_{2} \mathrm{O}\right.$-exchangeable, ArOH$), 3.02(1 \mathrm{H}, \mathrm{m}, J=7 \mathrm{~Hz}, \mathrm{CH})$, $2.41\left(2 \mathrm{H}, \mathrm{brs}, 11-\mathrm{CH}_{2}\right), 2.13\left(6 \mathrm{H}, \mathrm{s}, 7-\right.$ and $\left.13-\mathrm{CH}_{3}\right), 1.46\left(4 \mathrm{H}, \mathrm{m},-\mathrm{CH}_{2} \mathrm{CH}_{2}-\right), 1.11 \mathrm{ppm}(3 \mathrm{H}, \mathrm{d}$, $\left.J=7 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}\right)$; hrms $m / z 236.1431 \mathrm{M}^{+}$(calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{3}, 236.1412$).
(-)-CURCUHYDROQUINONE [5b].-A solution of phenol $\mathbf{4 a}(0.944 \mathrm{~g}, 4 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}(50$ ml) was added dropwise under anhydrous conditions to an ethereal solution of $\mathrm{CH}_{3} \mathrm{MgI}(2.33 \mathrm{~g}, 14 \mathrm{mmol})$. The mixture was agitated with warming to reflux during 3 h (17), hydrolyzed with $10 \% \mathrm{HCl}$, extracted twice with $\mathrm{Et}_{2} \mathrm{O}$, and evaporated to dryness. The crude product of the reaction was dissolved in 50 ml of $\mathrm{C}_{6} \mathrm{H}_{6}$ and treated with a catalytic quantity of I_{2}. After heating at reflux for 0.5 h , the solution was washed $\left(\mathrm{H}_{2} \mathrm{O}\right)$ and evaporated to yield curcuhydroquinone $[\mathbf{5 b}](840 \mathrm{mg}, 90 \%)$ as an oil, $[\alpha]^{25} \mathrm{D}-36^{\circ}(62.3$, CHCl_{3}). Spectroscopic properties (uv, ir, and ${ }^{1} \mathrm{H} n \mathrm{nmr}$) were identical to those reported (11). Curcuhydroquinone [5b] in $\mathrm{Me}_{2} \mathrm{CO}$ was treated with an excess of Jones reagent in the cold. After extraction with $\mathrm{Et}_{2} \mathrm{O}$, curcuquinone $[\mathbf{6 a}]$ (11) was obtained in quantitative yield.

Hydroxyperezone [6d]. - A mixture of $17 \% \mathrm{H}_{2} \mathrm{O}_{2}(2 \mathrm{ml})$ and $25 \% \mathrm{NaOH}(2 \mathrm{ml})$ was added to 200 mg of curcuhydroquinone [$\mathbf{5 b}$]. The reaction mixture was stirred at room temperature overnight (18). After acidification with $10 \% \mathrm{HCl}$, extraction with EtOAc , drying $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporation to dryness, the resulting orange-red plates, $\mathrm{mp} 121-123^{\circ}(200 \mathrm{mg}, 94 \%$), were characterized as hydroxyperezone [$\mathbf{6 d}]$ by comparison with an authentic sample (10).

Xanthorrhizol [5a].-The aldehyde $\mathbf{3 a}$ (500 mg) was dissolved in $\mathrm{C}_{6} \mathrm{H}_{6}\left(25 \mathrm{ml}\right.$) under N_{2}. Chlorotris (triphenylphosphine) rhodium (21,22) (620 mg) was added, and the solution warmed at 50° with stirring during 3 h . As the red color vanished from the rhodium complex, a solid light yellow precipitate was formed that was removed by filtration under reduced pressure. The filtrate was evaporated to dryness to give a yellow oil which was chromatographed on SiO_{2}. Elution with CHCl_{3} afforded 400 mg of $5-$ (2'-ketoheptan- 6^{\prime}-yl)-2-methylphenol; ir $3400(\mathrm{OH})$ and $1710 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$-nmr signals in the aromatic region were observed for three protons at $7.10,6.70$ (sharp and broad doublets, respectively, $J=8$ Hz), and $6.50 \mathrm{ppm}(\mathrm{br}$ s) together with the signals previously described for its side chain; hrms m / z $220.1458 \mathrm{M}^{+}$(calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{2}, 220.1463$).

A solution of 5 -(2'-ketoheptan- 6^{\prime}-yl)-2-methylphenol (350 mg) in $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{ml})$ was treated with 2.2 equiv of $\mathrm{CH}_{3} \mathrm{MgI}$ and dehydrated as previously described to yield xanthorrhizol [5a] ($260 \mathrm{mg}, 75 \%$). The physical and spectroscopic constants of the product were the same as those reported earlier (12).

IsOperezone [6b].-A solution of 1 g of $\mathbf{3 a}$ in 20 ml of $\mathrm{Me}_{2} \mathrm{CO}$ was treated with 1 ml of $\mathrm{Me}_{2} \mathrm{SO}_{4}$ and 2 g of $\mathrm{K}_{2} \mathrm{CO}_{3}$ and heated at 40° for 1 h . The solution was filtered, concentrated, redissolved in EtOAc, washed with $\mathrm{H}_{2} \mathrm{O}$, and evaporated to yield 1 g of $\mathbf{3 b}$ as a colorless oil; ir $1700(\mathrm{C}=\mathrm{O}$ ketone), $1680(\mathrm{C}=\mathrm{O}$, aldehyde), $1250 \mathrm{~cm}^{-1}$ (aromatic ether); ${ }^{1} \mathrm{H} \mathrm{nmr} 9.93(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}), 7.40$ and $6.80(1 \mathrm{H}$ each, s, ArH), $3.99\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.71(1 \mathrm{H}, \mathrm{m}, J=7 \mathrm{~Hz}, \mathrm{CH}), 2.33\left(2 \mathrm{H}\right.$, br s, $\left.11-\mathrm{CH}_{2}\right), 1.20 \mathrm{ppm}(3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}$, $\mathrm{CH}_{3} \mathrm{CH}$); hrms $m / z 262.1583 \mathrm{M}^{+}$(calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{3}, 262.1569$).

The methoxyaldehyde $\mathbf{3 b}$ (500 mg) dissolved in 2 ml of a solution obtained by mixing 1 ml of 32% $\mathrm{H}_{2} \mathrm{O}_{2}$ with 1 ml of $t-\mathrm{BuOH}$ was warmed at $50-60^{\circ}$ with a catalytic quantity of $\mathrm{SeO}_{2}(23)$ during 1 h . The addition of 10 ml of $\mathrm{H}_{2} \mathrm{O}$ permitted ethereal extraction of the reaction product. The organic layers were evaporated and chromatographed over Si gel, eluting with CHCl_{3}, to give 300 mg of methoxyphenol $\mathbf{4 b}$ and 180 mg of the correspondent formate. The compound $\mathbf{4 b}$ gave absorptions in the ir at $3400(\mathrm{OH})$ and $1700 \mathrm{~cm}^{-1}\left(\mathrm{C}=\mathrm{O}\right.$ ketone); ${ }^{1} \mathrm{H} \mathrm{nmr} 7.34\left(1 \mathrm{H}, \mathrm{brs}, \mathrm{D}_{2} \mathrm{O}\right.$ exchange), $6.41(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 3.75(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3} \mathrm{O}\right), 2.86(1 \mathrm{H}, \mathrm{m}, J=7 \mathrm{~Hz}, \mathrm{CH}), 2.30\left(2 \mathrm{H}, \mathrm{brs}, 11-\mathrm{CH}_{2}\right), 2.03\left(6 \mathrm{H}, \mathrm{s}, \mathrm{A} C \mathrm{CH}_{3}, 13-\mathrm{CH}_{3}\right), 1.46(4 \mathrm{H}$, $\mathrm{m},-\mathrm{CH}_{2} \mathrm{CH}_{2^{-}}$), $1.16 \mathrm{ppm}\left(3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{CH}_{3}-\mathrm{CH}\right)$; hrms $\mathrm{m} / \mathrm{z} 250.1591 \mathrm{M}^{+}$(calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{3}$, 250.1569). The formate gave ir absorptions at 1760 and $1700 \mathrm{~cm}^{-1}\left(\mathrm{C}=\mathrm{O}\right.$ formate and ketone); ${ }^{1} \mathrm{H} \mathrm{nmr}$ $8.28\left(1 \mathrm{H}\right.$, sharp s, $\mathrm{D}_{2} \mathrm{O}$ no exchange), 7.66 and $7.00(1 \mathrm{H}$ each, $\mathrm{s}, \mathrm{ArH}), 3.83\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{;} \mathrm{O}\right)$, and the signals previously described for its side chain.

The formate in $\mathrm{EtOH}(10 \mathrm{ml})$ was treated with $10 \% \mathrm{~K}_{2} \mathrm{CO}_{3}$ at 50° for 15 min and neutralized (10% $\mathrm{HCl})$. Extraction with $\mathrm{Et}_{2} \mathrm{O}$ yielded the methoxyphenol $\mathbf{4 b}$.

The compound $\mathbf{4 b}$ (400 mg) in $\mathrm{Et}_{2} \mathrm{O}$ was treated with 2.2 equiv of $\mathrm{CH}_{3} \mathrm{MgI}$ and dehydrated (catalytic I_{2}). Work-up as described above yielded curcuhydroquinone 4 -methyl ether [$\mathbf{5 c}$] ($375 \mathrm{mg}, 94 \%$); ir $3450 \mathrm{~cm}^{-1}(\mathrm{OH}),{ }^{1} \mathrm{H} \mathrm{nmr} 6.31\left(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchange), $5.01(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=), 3.71(3 \mathrm{H}, \mathrm{s}, \mathrm{MeO})$, $2.80(1 \mathrm{H}, \mathrm{m}, J=7 \mathrm{~Hz}, \mathrm{CH}), 2.07\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{3}\right), 1.63$ and $1.46\left(2 \times 3 \mathrm{H}\right.$ br singlets, $\left.\mathrm{C}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $1.10\left(3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}\right.$) ; hrms $m / z 248.1752 \mathrm{M}^{+}$(calcd for $\mathrm{C}_{16} \mathrm{H}_{2+} \mathrm{O}_{2}, 248.1776$).

A solution containing $375 \mathrm{mg}(1.6 \mathrm{mmol})$ of curcuhydroquinone 4 -methyl ether $\{5 \mathrm{c}]$ in MeCN (15 ml) was reacted with catalytic quantities of $\mathrm{Cu}_{2} \mathrm{Cl}_{2}$ and Cu° powder (10 mg each) $(24,25$). The reaction was
stirred at room temperature in an O_{2} atmosphere for 4 h . It was then acidified with $10 \% \mathrm{HCl}$ and extracted three times with $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{ml})$. The combined extracts were dried and concentrated to give a yellow oil [5 d] ($350 \mathrm{mg}, 87 \%$) that was used without purification. Demethylation (26) of 5 d was carried out with $\mathrm{AgO}(380 \mathrm{mg}, 3 \mathrm{mmol})$ in $\mathrm{Me}_{2} \mathrm{CO}(15 \mathrm{ml})$ and $6 \mathrm{~N} \mathrm{HNO}_{3}(0.7 \mathrm{ml})$. The reaction was kept at 50° during $10-15 \mathrm{~min}$ (until AgO was consumed) and then quenched by addition of 10 ml of $\mathrm{H}_{2} \mathrm{O}$ and 10 ml of CHCl_{3}. The aqueous phase was extracted three times with CHCl_{3}. The organic layers were combined, dried over MgSO_{4}, and concentrated to give $270 \mathrm{mg}(82 \%)$ of isoperezone [6 b], yellow plates, $\mathrm{mp} 97-98^{\circ}$; ir $3250\left(\mathrm{OH}\right.$) and $1670 \mathrm{~cm}^{-1}$ (quinoid ring); ${ }^{1} \mathrm{H} \mathrm{nmr}$ similar to perezone [$\left.\mathbf{6 c}\right]$ except the signals corresponding to the quinoid proton ($1 \mathrm{H}, \mathrm{s}, 5.46$) and the quinoid $\mathrm{Me}(3 \mathrm{H}, \mathrm{s}, 2.06 \mathrm{ppm})$. Acetylation of $\mathbf{6 b}$ with $\mathrm{Ac}_{2} \mathrm{O}-\mathrm{NaOAc}$ by the conventional method gave 2 -acetoxy- 5 -desoxyperezone (isoperezone acetate) (9).

Perezone [$\mathbf{6 c}$].-To a solution of aldehyde $\mathbf{3 a}$ (500 mg) in $\mathbf{M e C N}$ under an O_{2} atmosphere was added catalytic $\mathrm{Cu}_{2} \mathrm{Cl}_{2}$ and Cu° powder (15 mg each). After 12 h the product was worked up as described above, yielding $2-\left(2^{\prime}\right.$-ketoheptan- 6^{\prime}-yl)-3,4-dihydroxy-5-methylbenzaldehyde (480 mg , 90%); ir 3450 $(\mathrm{OH}), 1680,1710 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H} \mathrm{nmr} 9.98(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}), 8.48\left(2 \mathrm{H}, \mathrm{brs}, \mathrm{D}_{2} \mathrm{O}\right.$ exchange $), 7.51(1 \mathrm{H}$, $\mathrm{s}, \mathrm{ArH})$ besides the typical signals of its side chain; hrms $m / z 264.1379 \mathrm{M}^{+}$(calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{4}$, 264.1361).

A solution of 2-(2'-ketoheptan-6'-yl)-3,4-dihydroxy-5-methylbenzaldehyde (400 mg) with 5 ml of a mixture of $3 \% \mathrm{H}_{2} \mathrm{O}_{2}$ and 1 N NaOH (1:1) was stirred at 40° for 18 h in the dark. The reaction mixture was worked up as described above. The corresponding phenol (hydroxyhydroquinone) was readily oxidized but was shown not to contain an aldehyde group (ir, ${ }^{1} \mathrm{H} \mathrm{nmr}$). It was dissolved in anhydrous $\mathrm{Et}_{2} \mathrm{O}$ and was treated with 5 equiv of $\mathrm{CH}_{3} \mathrm{MgI}$. Work-up by the procedure described above gave an oily material which with air or Jones reagent gave yellow plates, mp 98°, characterized as perezone $[\mathbf{6 c}](8)(73 \%)$.

ACKNOWLEDGMENTS

We are indebted to SEP, México, for partial financial support.

LITERATURE CITED

1. J.W. Lown, Acc. Chem. Res., 15, 381 (1982).
2. J.M. Cardoso and G. Alcántara Sarabia, Comparación Morfológica en la rata, de la fogosis inducida con perezona y con carragenina en la articulación de la rodilla. XVI Congreso Nacional de la Soc. Mexicana de Bioquímica, Taxco Gro, México, Nov. 1986, Paper no. 123.
3. I.H. Sánchez, S. Mendoza, M. Calderón, M.I. Larraza, and H.J. Flores, J. Org. Chem., 50, 5077 (1985).
4. K. Yamaguchi, J. Pharm. Soc. Jpn., 62, 291 (1942).
5. F. Kogl and A.G. Boer, Rec. Trav. Chim., 54, 779 (1935).
6. I.H. Sánchez, C. Lemin, and P. Joseph-Nathan, J. Org. Chem., 46, 4666 (1981).
7. J. Tanaka and K. Adachi, J. Chem. Soc. Jpn. Ind. Chem. Sect., 1505 (1983).
8. P. Joseph-Nathan, E. García G., and V. Mendoza, Phytochemistry, 16, 1086 (1977).
9. F. Bohlmann, M. Ahmed, M. Grenz, R.M. King, and H. Robinson, Pbytochemistry, 22, 2858 (1983).
10. P. Joseph-Nathan, M.P. González, and E. García G., Tetrahedron, 30, 3461 (1974).
11. F.J. McEnroe and W. Fenical, Tetrabedron, 34, 1661 (1978).
12. F. Karig, Dtsch. Apoth. Ztg., 115, 325 (1975).
13. F. Bohlmann and Ch. Zdero, Chem. Ber., 110, 468 (1977).
14. P. Joseph-Nathan, J.D. Hernández, L.U. Román, E. Garcia G., and V. Mendoza, Phytochemistry, 21, 669 (1982).
15. E. García G., V. Mendoza, and A. Guzman B., J. Nat. Prod., in press.
16. J.B. Lee and B.C. Uff, Q. Rev., Chem. Soc., 21, 429 (1967).
17. G. Metha and A.V. Reddy, Tetrabedron Lett., 2625 (1979).
18. R.G. Jones and H.A. Shoule, J. Am. Chem. Soc., 67, 1034 (1945).
19. B.S. Bal, W.E. Childers, Jr., and H.W. Pinnick, Tetrabedron, 37, 2091 (1981).
20. H.P. Figeys and A. Dralants, Tetrabedron, 28, 3031 (1972).
21. Y. Shimizu, H. Mitsuhashi, and E. Caspi, Tetrabedron Lett., 4113 (1966).
22. J. Tsuji and Kiyotaka Ohno, Tetrabedron Lett., 3969 (1965).
23. W.D. Dittmann, W. Kirchoff, and W. Stumpf, Liebigs Ann. Chem., 681, 30 (1965).
24. O. Reinaud, P. Capdeville, and M. Maumy, Tetrabedron Lett., 26, 3993 (1985).
25. P. Capdeville and M. Maumy, Tetrabedron Lett., 23, 1573 and 1577 (1982).
26. K. A. Parker, D.M. Spero, and K. A. Koziski, J. Org. Chem., 52, 183 (1987).
